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Computer simulation study of a simple tetrahedratic mesogenic lattice model
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Over the last 12 years, the possible existence of a tetrahedratic mesophase, involving a third-rank orienta-
tional order parameter and no positional order, has been addressed theoretically and predicted in some cases;
no experimental realizations of a purely tetrahedratic phase are known at the time being, but various pieces of
evidence suggest that interactions of tetrahedral symmetry do play a significant role in the macroscopic
properties of mesophases resulting from banana-shaped (bent-core) mesogens. We address a very simple
tetrahedratic mesogenic lattice model, involving continuous interactions; we consider particles possessing 7,
symmetry, whose centers of mass are associated with a three-dimensional simple-cubic lattice; the pair poten-
tial is taken to be isotropic in orientation space and restricted to nearest-neighboring sites; we let the two
orthonormal triads {u,, @=1,2,3} and {v,, y=1,2,3} define the orientations of a pair of interacting par-
ticles; we let the unit vectors u, be combined to yield four unit vectors {e;, j=1,2,3,4}, arranged in a
tetrahedral fashion; we let the unit vectors v, be similarly combined to yield the four unit vectors {f;, k
=1,2,3,4}; and finally we let h;=(e;-f;). The interaction model studied here is defined by the simplest
nontrivial (cubic) polynomial in the scalar products /4, consistent with the assumed symmetry and favoring
orientational order; it is, so to speak, the tetrahedratic counterpart of the Lebwohl-Lasher model for uniaxial
nematics. The model was investigated by molecular field (MF) theory and Monte Carlo simulations; MF theory
predicts a low-temperature, tetrahedrically ordered phase, undergoing a second-order transition to the isotropic
phase at higher temperature; on the other hand, available theoretical treatments point to the transition being
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driven first order by thermal fluctuations. Simulations showed evidence of a first-order transition.
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I. INTRODUCTION AND POTENTIAL MODELS

Nematic liquid crystals are usually apolar and uniaxial,
although their constituent molecules do not possess such
high symmetries; on the other hand, over the last few de-
cades, a number of theoretical investigations have addressed
the possibility of orientationally ordered phases with differ-
ent symmetries and no positional order; in turn, these theo-
retical results have prompted various attempts to produce
experimental realizations, and the task has often proven to be
rather difficult.

For example, since 1970, various theoretical treatments
had predicted the possible existence of biaxial nematic
phases; stable biaxial phases had been observed in lyotropic
systems as early as 1980; in the following years there had
been some claims and counterclaims of synthesizing and un-
ambiguosly characterizing a thermotropic biaxial nematic,
and better experimental evidence seems to have been pro-
duced over the last two years (see, e.g., Refs. [1-4]); a more
extensive discussion and a detailed bibliography can be
found in Refs. [5,6].

Another example, where no experimental realization is
known to date, involves the possible existence of a cubatic
mesophase, possessing cubic orientational order (i.e., along
three mutually orthogonal axes); this has been investigated
theoretically [7] and explicitly predicted in some specific
cases, involving both hard-core [8] and continuous interac-
tion models [9]. A more extensive discussion and a detailed
bibliography can be found, e.g., in Ref. [9].
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The possibility of tetrahedratic orientational order, involv-
ing a third-rank order parameter was proposed and studied
by Fel [10,11]; its transitional behavior was later studied by
Radzihovsky and Lubensky [12,13], and the macroscopic
consequences of tetrahedratic order were discussed in detail
by Cladis, Brand, and Pleiner [14-16]; a detailed symmetry
classification of “unconventional” nematic phases—i.e., as-
sociated with the onset of either one tensor of rank different
from 2 or of several combined tensors—has recently been
carried out by Mettout [17].

Also starting in the mid-1990s, bent-core (banana-shaped)
mesogen were synthesized [18] and found to produce mostly
smectic, and sometimes also nematic [19], phases; in some
cases, evidence of thermotropic biaxial nematic behavior has
been found in them [ 1-4]; numerical simulation studies have
been undertaken as well (see, e.g., Refs. [20,21]). No experi-
mental realizations of a purely tetrahedratic phase are known
at the time being, and no third-rank order parameter has been
measured to date, but the theoretical analyses in Refs.
[12-16] show that interactions of tetrahedral symmetry (or,
in more general terms, a description allowing for first-,
second-, and third-rank ordering tensors) are needed for the
proper comprehension of macroscopic properties of me-
sophases resulting from bent-core molecules.

On the other hand, over the decades, mesophases possess-
ing no positional order, such as the nematic one, have often
and quite fruitfully been studied by means of lattice models
involving continuous interaction potentials [22,23], starting
with the model proposed by Lebwohl and Lasher (LL) and
used for their seminal simulation papers in the early 1970s
[24,25]; this approach also yields a convenient contact with
molecular field (MF) treatments of the Maier-Saupe (MS)
type [26-28]. As noted, for example, in Ref. [23], usage of a
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lattice model produces significant savings in computational
terms; moreover, it entails that a number a competing phases
(e.g., smectic ones) are excluded from the start; notice that
similar simplifications as for the possible phases are used in
other named theoretical treatments as well.

Following and suitably modifying the line of reasoning in
Ref. [9], we define and investigate here a minimal lattice
model capable of producing (purely) tetrahedratic order.

In both cases the underlying idea is to construct the pair
interaction via a simple geometric molecular model in terms
of scalar products among two sets of unit vectors associated
with the two interacting particles, respectively; the pair po-
tential is written as a polynomial in the named scalar prod-
ucts; both the number of unit vectors and the polynomial
order are given the smallest values consistent with the as-
sumed molecular symmetry, and the sign of the interaction is
chosen so as to produce an ordered ground state.

As for symbols and definitions, we are considering clas-
sical, identical particles, possessing 7,; symmetry, whose cen-
ters of mass are associated with a three-dimensional (simple
cubic) lattice 7°; let x u€ 73 denote the coordinate vectors of
their centers of mass; the interaction potential is taken to be
isotropic in orientation space and restricted to nearest neigh-
bors, involving particles or sites labeled by u and v, respec-
tively. The orientation of each particle can be specified via an
orthonormal triplet of three-component vectors (e.g., eigen-
vectors of its inertia tensor)—say, {w mas Q= 1,2,3}; in turn,
these are controlled by an ordered triplet of Euler angles
w,={¢,.0,.¢,}; particle orientations are defined with re-
spect to a common, but otherwise arbitrary, Cartesian frame
(which can, but need not, be identified with the Ilattice
frame). It also proves convenient to use a simpler notation
for the unit vectors defining orientations of two interacting
molecules [29]—i.e., u, for w,, and v, for w,, respec-
tively; here, for each a, u, and v, have the same functional
dependences on w, and w,, respectively (pairs of corre-
sponding unit vectors in the two interacting molecules); let

0=0 uv denote the set of Euler angles defining the rotation
transforming u, into v,; Euler angles will be defined here
according to the convention used by Brink and Satchler, see
also Ref. [30]. Moreover, let the orthonormal triplet of unit
vectors associated with a lattice site be combined to yield
four unit vectors {p,, ;, j=1,2,3,4} arranged in a tetrahedral
fashion—e.g.,

p,u,l = C(+ Wp,,l - w,u,Z - W,u.,3)s
Pp2= c(= W1t Wuo— W,L,3),
p,u.,3 = C(_ w/.L,l - W,U.,Z + w,u.,S)a

p,u,4 = C(+ Wp,,l + W,u,,2 + w,u,S)’ (1)

where ¢= = 3/3 is an appropriate normalization factor.

It again proves convenient to use a simpler notation for
the two sets of tetrahedral unit vectors in the two interacting
molecules [29]—i.e., e; for p,,; and f; for p,,;, respectively;
let us finally define
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I’ljk=(ej'fk). (2)

An interaction potential consistent with the assumed symme-
try can be written

4 4

W= \P,uv = E E O(hjk)’ (3)
j=1 k=1
where O(--+) denotes an odd function of its argument (notice
that an even part alone would correspond to a higher, O,
symmetry); O is also assumed to be analytical, so that Eq.
(3) can be expanded as a convergent series of the form

4 4 4 4
V=2 o | 22| =2 bog | 202 Popa () |

=1 j=1 k=1 =1 j=1 k=1
(4)

where Py, () denotes Legendre polynomials of odd order;
notice also that, by the underlying symmetry,

4 4 4 4
> D Pyhy) =2 2 Py(hy) =0. (5)

j=1 k=1 j=1 k=1

The simplest interaction model expected to produce tetrahe-
dratic order is obtained by setting a5 or b3 to negative quan-
tities, and all other higher-order coefficients to zero; in other
words,

4 4 4 4

9 9 ~
\I’=—_622h;k=— 622P3(hjk)=—6G3(Q),

32 30 e 80 21 k=i
(6)
where € denotes a positive quantity, setting energy and tem-
perature scales (i.e., T"=kzT/ €), and numerical factors have
been adjusted by setting the minimum value to —e; let us
define, also for future reference, the normalization factors
B 1
AP (1) +3P(-1/3)]

B; L=3,4; (7)

thus, B;=9/80 and B,=27/112, where B; actually appears in
front of the second sum in Eq. (6).

Upon expanding G3((~l) over the orthonormal basis of
Wigner D functions [30] and comparing the resulting coeffi-
cients (the relevant integrals were calculated by means of
MAPLE), it was found that its expression can be cast in the
form

~ 1 —
G3(Q) = §(+ SSO() + \“"10503 + 2S33), (8)

where the three symbols Sy, So3, and S33 denote symmetry-
adapted combinations (see also Refs. [8,31,32]):

Soo= DS,O(ﬁ) = P5(cos 6) = (5 cos® 8—3 cos 6)/2, (9)

Su3 =D 5(Q) + D (G) = D2, () - D} _(6)

= (1/2)\@ sin® 6(cos 3¢ — cos 3¢), (10)
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S33= Dz3,—3(ﬁ) - DiB,—S (ﬁ) - ,D33,+3(ﬁ) + DiS,+3(ﬁ)

[(1 +cos 6)cos 3(b+ i)

B

—(1=cos 6)cos 3(d- )]. (11)

II. MOLECULAR-FIELD TREATMENT
AND SIMULATION METHODOLOGY

After applying a MF procedure [28], the resulting expres-
sion for the free energy has the form

Ayp=pss— T n[Z/(877)],
E= J exp(BW)dw, (12)
Eul

W=2ps;Gs5(w), B=1/T, (13)

where [, denotes integration over Euler angles; i.e., for any
integrable function Fw),

2
Flw)dy, (14)

Eul 0

2 T
Flo)dw = J d(bJ sin 6df
0 0

here, 2p=6 denotes the lattice coordination number and s5 is
the variational parameter (i.e., the order parameter). More-
over,

G1(w)exp(BW)dw; (15)

Eul

T=5;—(1/E)
the consistency equation 7=0 can also be rewritten as
= =J G(w)exp(BW)dw. (16)
Eul

The free energy was minimized numerically for each tem-
perature over a fine grid by means of numerical routines
using both the function [Eq. (12)] and its derivative [Eq.
(15)].

The obtained variational parameters can be then used to
calculate the potential energy per particle Uy,

Uyr=—"—, =-p53 (17)

where the consistency equation has been allowed for in the
right-hand expression, and hence the configurational specific
heat wa » by numerical differentiation; here and in following
formulas, asterisks mean scaling by € for energy quantities
and scaling by kg for the specific heat.

Results of the minimization procedure suggested that the
parameter s3 vanished continuously at the transition; there-
fore, we also considered Eq. (16) and used a power-series
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expansion with respect to s; for both integrals appearing in
it; truncation at some low order n yielded a polynomial equa-
tion involving odd powers of s; only and whose coefficients
were controlled by definite integrals of even powers of
G;(w), up to exponent (n+ 1), over the whole angular space.
Notice that this procedure is usually applied to the nontrivial
approximation of lowest order—i.e., n=3; here, as an addi-
tional comparison, the relevant integrals were calculated ana-
Iytically, and the resulting polynomial equations of orders
n=3,5,7,9 were solved in closed form by means of MAPLE.
For each value of n, this procedure yielded only one solution
continuously vanishing at 0,,,=(6/7)=0.857143, and in
agreement with the results of the above numerical minimiza-
tion procedure for T* sufficiently close to ®,; the usual
asymptoptic behavior s3%\0,—T" for T°— 0@,,;—0 was
found as well: in this case the value of proportionality coef-
ficient was (1/2)y286=8.4558 and the asymptotic behavior
was reached when ©,,,—T*=<10° whereas, for example,
truncation at n=5 was adequate for 7°=0.8571.

A similar MF approach was worked out by Fel [10], but
for a different interaction model; a Landau free energy den-
sity constructed in terms of scalar invariants of a third-rank
ordering tensor was considered in Refs. [12,13], and both
approaches yielded a second-order transition. On the other
hand, available theoretical treatments point to the transition
being driven first order by thermal fluctuations [10,12,13].

Simulations were carried out on a periodically repeated
cubic sample, consisting of V=g’ particles, ¢
=10,12,16,20,24,32; calculations were run in cascade, in
order of increasing temperature; each cycle (or sweep) con-
sisted of 2V Monte Carlo (MC) steps, including a sublattice
sweep [33]; the finest temperature step used was AT™
=0.0005 in the transition region (but see also below for ad-
ditional simulations). Different random-number generators
were used, as discussed in Ref. [33].

Equilibration runs took between 25000 and 100 000
cycles, and production runs took between 250 000 and
1 000 000; macrostep averages for evaluating statistical er-
rors were taken over 1000 cycles. Calculated thermodynamic
quantities include mean potential energy per site, U*, and
configurational specific heat per particle, C*.

Since interactions of tetrahedral symmetry are expected to
produce secondary cubatic correlations as well, we worked
out structural quantities of both types. As for the frame-
independent (rotationally invariant) order parameters, let

vV Vv 4 4
M= \/BLE PADDS Pi(pr; Pup)], L=3.4

A=l v=1 j=1 k=1

(18)

then, the simulation estimate for the order parameters is

1
sp= ‘_/<ML> (19)

and the associated susceptibilities read

X = BUMD — (4,7). (20)
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Notice also that, by the addition theorem for spherical har-
monics [30], the double sums appearing in Eq. (18) actually
reduce [8,9] to linear combinations of the squares of the
simpler quantities

14
fj,L,m = 2 Re[CL,m(P,u,j)],
u=1
Vv
nj,L,m = E Im[CL,m(p,u,j)]; (21)
p=1

here, m=0,1,...,L and C; (- ) are modified spherical har-
monics, and Re and Im denote real and imaginary parts, re-
spectively; in turn, each spherical harmonics is a suitable
polynomial constructed in terms of Cartesian components of
the corresponding unit vector (see, e.g., Ref. [34]); in this
case first- and second-rank order parameters are zero by
symmetry [28].

One can also evaluate the so-called short-range order pa-
rameter [35,36]

4 4
o,=B; EEPL(hjk) , L=3.4, (22)

j=1 k=1

measuring correlations between pairs molecules associated
with nearest-neighboring sites; in the present case, the func-
tional form of the interaction potential entails that the poten-
tial energy is proportional to o3—i.e., U"=—pa3. Moreover,
long- and short-range orientational order can be compared
via the correlation excesses

rL=0'L—Si. (23)

III. RESULTS AND COMPARISONS

As mentioned above, the MF treatment predicted a
second-order transition; thus, the order parameter decreased
continuously and monotonically, vanishing at ©,,;=6/7,
where the specfic heat exhibited a discontinuous jump to
zero; its limit as 7" — ©,,-—0 was found to be 429/2; on the
other hand, simulation results (Figs. 1-9) pointed to a differ-
ent scenario.

Simulation results for the short-range order parameters o3
(and hence the potential energy U*) and oy, Figs. 1 and 2,
respectively, were found to be independent of sample size for
T=0.68 and then 7=0.72, and showed a pronounced
sample-size dependence in between; actually, for g=24, the
two figures exhibited a pronounced jump taking place over a
temperature range of 0.0005 between the two values T,
=0.6895 and T3=0.690; for =32, the jump appeared to take
place between 77=0.689 and 7. Figures 4 and 5 showed a
similar pattern as for the jumps of the long-range order pa-
rameters s;, taking place at the same temperature as for U™;
on the other hand, in the low-temperature régime, sample-
size effects appeared to become rather mild for g=20,
whereas the high-temperature region exhibited a pronounced
decrease of s; with increasing sample size.

Both configurational specific heat (Fig. 3) and suscepti-
bilities (Figs. 6 and 7) peaked around the same temperature,
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FIG. 1. Simulation results for the short-range order parameter
o3, obtained with different sample sizes. Circles, g=10; squares,
g=12; triangles, g=16; lozenges, ¢=20; crosses, g=24; stars, ¢
=32. Unless otherwise stated or shown, here and in the following
figures, the associated statistical errors fall within symbol sizes. See
also the text about additional simulations carried out in the transi-
tion region.

corresponding to the above jumps; they showed a recogniz-
able sample-size dependence over the named temperature
range 0.68 <T*=<0.72 and were again largely unaffected by
sample sizes outside it.

Simulation results for the correlation excess are plotted in
Figs. 8 and 9, where the transition is signaled by a recogniz-
able jump; in the disordered region, sample-size effects ap-
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FIG. 2. Simulation results for the short-range order parameter
oy4; same meaning of symbols as in Fig. 1.
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FIG. 3. Simulation results for the configurational heat capacity;
same meaning of symbols as in Fig. 1; here, as well as in the
following Figs. 6 and 7, the associated statistical errors, not shown,
range between 1% and 5%.

pear to saturate for ¢ =20; notice also that r; peaks at tran-
sition, whereas r, (a “secondary” quantity) keeps decreasing
with increasing temperature.

Thus we propose a first-order transition and the value
04,c=0.690=0.001, for the transition temperature; here, the
error bar is conservatively taken to be twice the temperature
step used in the transition region. Upon analyzing the simu-
lation results for the largest sample at the two temperatures
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FIG. 5. Simulation results for the long-range order parameter sy,
obtained with different sample sizes; same meaning of symbols as
in Fig. 1.

T, and T, as discussed in Refs. [37,38], we obtained the
following estimates for transitional properties:

53=0.342 = 0.015, s4=0.172 = 0.015,

Ao3=-0.06 =0.01, Ao,=-0.052*0.007,

0c=0.690 = 0.001, AU"=0.18 = 0.03,
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FIG. 6. Simulation results for the order parameter susceptibility
X3. obtained with different sample sizes: same meaning of symbols
as in Fig. 1.

FIG. 4. Simulation results for the long-range order parameter s,
obtained with different sample sizes; same meaning of symbols as
in Fig. 1.
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FIG. 7. Simulation results for the order parameter susceptibility
X4 obtained with different sample sizes: same meaning of symbols
as in Fig. 1.

Actually, the same analysis was also applied to simulation
results obtained for g=24 and the two temperatures T, and
T, and yielded results consistent with the ones listed here;
let us mention, for comparison, that the ratio @~/ © - is
=(.805 versus =0.878 for the cubatic model discussed in
Ref. [9] and =0.856 [22] for the model proposed by Leb-
wohl and Lasher (LL) and used for their seminal simulation
papers in the early 1070s [24,25]; in the two latter cases both
MF and MC models yield a first-order transition.

To the temperature step used (A7=0.0005), the maxima
of specific heat and susceptibility did not appear to increase

0.32

s L

0.28 -

0 O Do+

0.24 -

0.2 -

0o O P ofx*

L L L | L L L | L L L
O'W%,66 0.68 0.7 0.72

=
FIG. 8. Simulation results for the correlation excess r3 [see Eq.

(23)], obtained with different sample sizes: same meaning of sym-
bols as in Fig. 1.
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FIG. 9. Simulation results for the correlation excess r, [see Eq.
(23)], obtained with different sample sizes: same meaning of sym-
bols as in Fig. 1.

monotonically with g; this suggests that, for larger samples,
the “real” maxima may be attained somewhere else in the
transition region. Additional and longer simulations (up to
2 000 000 cycles) were therefore run for g > 12 around the
temperatures where the specific heat attains its maximum
and using a finer temperature step A7=0.0001. For g=16,
the simulation results for specific heat and susceptibility re-
mained roughly constant within associated statistical errors
between 75=0.6905 and 7,=0.6915, and the maxima did not
increase; on the other hand, for ¢=20,24,32, the maxima so
determined did show a recognizable increase with ¢ (these
new results were not added to the figures for reasons of read-

ability). Let now 7%(¢g) denote for each g, the temperature
where the specific heat C* attains its maximum C*(¢); the
values so determined were T%(10)=0.694, T%(12)=0.693,
T9(16)=0.6915, T*(20)=0.6904, T%(24)=0.6898, and
T%(32)=0.6892; for example, when ¢g=32, C*(32)=457+9;

plots of In C*(g) versus In ¢ (not reported) showed a linear
dependence as well as a slope close to 3 for ¢>12. Histo-
grams for the above macrostep averages of potential energy

and order parameter at the temperatures T*(q) were also pro-
duced; the histograms developed a recognizable two-peak
structure when g > 16; moreover, for g > 20, the abscissas of
the two peaks were in broad agreement with the estimates of
the corresponding transitional properties as listed above.

To summarize, we have defined a minimal tetrahedratic
mesogenic lattice model (so to speak, the tetrahedratic coun-
terpart of the LL model), involving continuous interactions,
and investigated it by MF and MC models; the MF model
predicts a second-order transition to an isotropic phase, and
other available theoretical treatments point to the transition
being driven first order by thermal fluctuations. Simulations
showed evidence of a first-order transition.
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As for the place of the present paper within current liquid
crystal research, on the one hand, our simulation results sub-
stantiate other theoretical treatments as mentioned in the In-
troduction, moving beyond the MF or Landau approxima-
tions under which they were obtained; on the other hand, this
is a minimal lattice model (see also remarks in the Introduc-
tion), but still capable of producing the required salient fea-
ture, whereas other theoretical treatments allow for first-,
second-, and third-rank interactions [13], producing richer
phase sequences. In the future one can envisage a number of
extensions or consider other somehow related models: for
example one can think of a pure excluded-volume (hard-
core) interaction model; this approach has been used for
uniaxial, biaxial, and cubatic counterparts (see also the Intro-
duction), but, as far as we could check, not for tetrahedratic
phases. Still giving up the lattice, one can think of soft-core
models where positional coordinates are continuous vari-
ables, the orientational interaction is modulated by some
function of the distance R between centers of mass, and a
purely positional term (another appropriate function of R) is
taken into account, so as to produce liquid cohesion; in the
case of uniaxial mesogenic models, this approach can be
traced back to Ref. [39]. Let us finally mention that rigid

PHYSICAL REVIEW E 77, 021704 (2008)

tetrahedra have been considered here, whereas other theoret-
ical treatments allow for their deformability by external
fields or flows [40].
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